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INTRODUCTION 

I n  a first approach t o  the study of Love Waves i n  t he  earth, the 

author has considered an earth model consisting of an e l a s t i c  layer having 

an i r regular  boundary, overlying a r i g i d  half-space [ll. 

The present work t r ea t s  the same problem using the more r e a l i s t i c  earth 

model i n  which the half-space is  elastic.  

DISCUSSION OF PROBLEM 

We consider the f i e ld  which results when a horizontally polarized 

shear wave, propagating i n  the plane portion of an e l a s t i c  layer, is 

incident on the irregular portion 

incident 
L 
wave 

L 

2 

figure 2 

The interface between the layer and half-space is  given by 

the upper boundary may be described by 

z = 0 and 

z P 2~ where 
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% = - H + bh(x), h(x) = 0 for  x -  < 0, x > - L 
h(x) = f(x) f o r  0 5 x 5 L 

and b is the maximum amplitude of the boundary i r regular i t ies .  For 

physical  reasons we require that the  scattered f i e l d  have only outgoing 

waves a t  x I - CD and a t  z I m. 
+ 

Assuming a harmonic time variation e ”” the equations of motion 

become 

a2v, 
7 + -  f k F i  = 0, i = 1,2 
ax2 3Z2 

where t h e  subscripts 1 and 2 refer t o  the layer  and half-space 

respectively,  and ki I #tr/ci, the tits being the shear wave veloci t ies ,  

and the V ‘s t he  displacement canponents i n  the y direction. i 

The boundary condition on the  t ract ion f r e e  upper boundary may 

be wr i t ten  

The displacement and s t r e s s  continuity on the lower boundary yields 

v1 = v2 
o n z = O  

I where p1 and u2 are material constants. 
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METHOD OF SOLUTION 

The incident wave which exists under the flat boundary may be 

wr i t ten  i n  the  form 

= A Cospl(z + H) e -lax 
'1, i n  

(4) 
-imc -B2Z 

'2, i n  = A e CosplH e 

- 1 1 
w i t h  f3, = (ki - B, = (a - 9' and a! is a root of 

Since we a re  only concerned wi th  propagating disturbances, w e  w i l l  consider 

only roots  of (5) f o r  which a is real,  such roots  ex i s t  only if  

I n  order t o  a r r ive  a t  the scattered f i e l d  described qua l i ta t ive ly  i n  

the  problem discussion above we assume a solution, which satisfies the 

wave equations (l), i n  the form of a contour in t eg ra l  i n  the canplex u 

plane given by 

C 

-p 2 
-ivx 

'2, scat. = D(u)e e du, w i t h  I! 2 = ( u 2 -  $' 
C 

where t h e  contour c i s  shuwn i n  figure 2. 
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v plane 

figure 2 

Subst i tut ing (6) i n t o  the boundary conditions (3) it is found tha t  the 

functions B(V), C(V) and D(v) a re  related by 

where y = -  
u242 

Using (7) i n  (6) an expression f o r  the t o t a l  displacement f i e l d s  i n  the 

layer  and half-space may be writ ten 

= Acospl(wH)e -iax + $ 2 B ( v l  [ycosFlz - isinFlz]e -ivxdv 
'1 = '1,in + '1,scat l+Y 

-? z -B2z -Irrx + 1 2yB(V) e 2 e-iWdi 
l + Y  

P Ae cosP2H e '2 '2,in + '2,scat 
C 

These expressions f o r  the displacement f i e l d  satisfy the wave equation 

and the boundary conditions (3), it remains t o  determine B(v) such 

that the boundary condition (2) i s  sat isf ied.  Accordingly, inser t ing 
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the  first of (8) in to  (2), we arrive a t  the  following form of the  

boundary condition (2), 

Ae'j"rx (-p,sing,bh + icicicicicicicicicich'cosp,bh) 
A I 

- J -{F1 l+y (ysinF1(-€€tbh) 
C 

- isinF1(-H+bh) e dv = 11 -ivx 

J. 

+ icosF1( -H+bh)] + ivbh' [ycosF1( -H+bh) 

0 

The solution t o  t h i s  in tegra l  equation i s  qui te  formidable, however 

i f  we r e s t r i c t  ourselves t o  boundaries having small i r regular i t ies ,  t ha t  

i s  b ee 1, we may apply a perturbation procedure t o  evaluate B(v). 

To carry out t h i s  perturbation we assume a ser ies  solution f o r  

, B(v) i n  the form 
(D 

B(v) = 1 I Bn(v)bn 
n= 1 

Inser t ing  (10) i n t o  (9) and expanding the resul t ing equation i n  powers 

of b we obtain 
t 

i 

Ae-iax [-pl (plbh + . . .' 1 + iabh' [ - 1 -(p1bh)2/2 + . . . 

- [(l-rFlbhl 2 /2 + ...) - i(rlbh + ...)] E sinEIH - ivbh' [i(Flbh + ...) 
1 L 

( 9 )  
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To first order i n  b w e  obtain 

which may be inverted t o  yield 

-a, 

Inser t ing  (13) i n t o  (8) we obtain expressions f o r  the  displacement f ie ld  

t o  first order i n  b, these may be written 

ycosFlz-isin4 z 

1 
eiv(y-x)dvdy 

-imr + b - m  ~a,(A/2a)(icrh1-p$)e-uy 1 C Fl(icos?lH-ysinF H) V1 = Acospl(a+H)e 

Since the  integrands f o r  the contour integrals  i n  the v plane, 

appearing i n  (14), are not single valued, the contour c must be chosen 

t o  l i e  on the  sheet which w i l l  yield the form of solution described i n  the 

problem discussion above. Accordingly, the  v plane is cut as shown i n  

f igure 3 w i t h  the  contour lying on the sheet wh’ch maps in to  the  r igh t  t 
half  4, plane under the mapping = (v2-k;)’* To evaluate these 

in tegra ls  the cases p x  and yyx are considered separately. 

Consider first the integrals 
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ycosqlz- i s  in!? 1z 
E: (icos4 H-ysinFIH) e iv(Y-x> dv 
1 1 

C 

and -4-2 
L 

iv(y-x)dv, w i t h  p x  e e 

J' C ?l(icosg 1 H-ysine lH) 

To evaluate these integrals,  the  contour 

i n  the l e f t  and r igh t  upper half  plane connected by a contour around the  

branch l ine ,  as shown i n  figure 3. 

c is closed by arcs a t  i n f in i ty  

c - 7  
I 
I 
I 
I 

/ I 
I 
I 
I 
I 
I 
I 

I 

0 

/ 
/ 

/ 

/ 

I 

v plane 

r -  - 
I 
I 
I 

I 
wbr:th 

The s ingular i t ies  of the  integrands i n  (15) wi th in  th i s  closed contour 

are poles which ex is t  a t  the zeros of 

icosp, H - ysinTIH t 0 1 

For the sheet chosen a l l  of these zeros, denoted by vm, 

r e a l  Y axis and sa t i s fy  - k < v ( -  

l i e  on the 

Furthermore, if t h i s  re la t ion 
(1) 

1 m -k2 

(1)pendix 
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i s  writ ten i n  the form 

a sketch of the f’unctions on the right and l e f t  hand side reveals tha t  

there ex is t  N such zeros, where N is  the integer part of the number 

1 

If we l e t  

rcose, z-isin?, z 
I I iv(y-x) G1(v) = (icosEIH-ysin?lH) e 

1 

and 

(15) may be written 

t? 1 G1(v)dv = 2ni 1 ResGl - 1 G1(v)dv - r G (v)dv 
C Branch 

J 1  
cQD l ine 

and 

C C 
QD 

Branch 
l ine 

The residues of G1 and G2 a t  the  poles urn a re  given by 
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i VJ Y -X 1 
ResGl = cosEh(H + z)e  /VmH 

and 

Where Flm and Fa are tl and q2 evaluated a t  vm. 

The asymptotic approximation of the in t eg ra l  around The branch l i n e  

1 -k z 2 
8 i n  the  f i rs t  of (17) contrib t o  order l/x I n  the second of (17) 

it contributes t o  order independent of z, and t o  order e /z 2 

independent of X. Therefore, i f  w e  r e s t r i c t  our a t tent ion t o  solutions far 

from t h e  i r regular  portion of the boundary the  contribution of the  branch 

l i n e  in tegra ls  i n  (1'1) a re  small compared t o  the contribution of t,he 

residue term, 

Furthermore, since the integrals  over the arcs  a t  i n f in i ty  i n  (17) 

vanish, we obtain 

and 

w i t h  the  zeros y,<O. 

Similarly,  for  ycx we may close the contour i n  the lower half plane 

and proceeding as above we obtain 
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with  the zeros vm70. 

Inser t ing (19) and (20) in to  (14), one obtains the  displacement 

f ields 

Since the  upper boundary of the  layer is given by 

h(x) t 0 f o r  x < - 0, x 2 L 

< <  h(x) = f (x )  fo r  0 - x - L 
then 

10 



With the  aid of (E), the  solution (21) may be wri t ten 

cosSImH ivmx L - i (Q+ Vm >Y 

’mH (b 

N ,-‘az 
- ibiy e (avrn-k:) r f (y )e  d Y  

V2 = A e -B2z cosB2H e -ZYX 

L. 

-1 

f o r  x e 0, and 

-i(a-v )y 
dY V1 = A cosB1(H-H)e - iLU - i b A 7  c o s ~ ~ ( ~ z )  e -ivrnx m 

N 

“InH -2 

llbcl 

I 

fo r  x >> L. 



APPENDIX 

To show that on the  sheet i n  the v plane which maps i n t o  the  

r igh t  half y2 plane, equation (l.6) 

1 1 

(kt - v 7 2  and F2 = (V' - k3' 
- 

v2?2 , where e Tan YIH = p 1 1-ll.1 

has only real roots Y -1, 2, 3 ..., and these roots  l i e  e i the r  i n  

the  in t e rva l  k2"',"kl or - k L v < -  -k2. 

m' 

1 m  
We may demonstrate t h i s  by showing tha t  the  roots of (16) i n  the 

r igh t  half q2 p l y e  ex i s t  only fo r  r ea l  f2  which satisfies 

To do t h i s  l e t  vnH = an + is,, n = 1, 2. Equation (16) then 

becmes 

(A-4) 



2 2 2  and v = 4, - k2 , we may write Furthermore, since v = ki - 4, 2 

2 2  2 2  
kl - f l  = F2 - k2 

the r e a l  par t  of which yields alp1 = 

Eliminating a1 between (A-4) and (A-5) the  r e su l t  may be writ ten 

- a2B2* (A-5 1 

Frm the expression (A-6) it cam be seen tha t  i f  F2 is  not real ,  

, t ha t  is, if f3, # 0, there exis ts  no CY* 5 0 which s a t i s f i e s  (A-6) since 

the l e f t  and r ight  sides are  always positive and negative respectively. 

roots of (16), on the sheet of interest ,  ex is t  only fo r  C2 real ,  

Thus 

1 
2 2 2  

- 
It remains t o  show that  there a re  no roots for  r e a l  q 7 (k 1 - k2> , 1 2 

2 2 2  t ha t  is, for p2 = 0 and a: > (kl - k2) H* This can be seen by observing 
1 2  

t ha t  4, = a2 > (kl 2 - k2) 2.2 implies \ V I  > kl or  F: is pure imaginary, 1 
t ha t  is, a1 = 0, and ylH = Equation (16) becomes 

or 

Since the  l e f t  and r igh t  sides of (A-7) are  negative and posit ive 

respectively, no roots exis t ,  

Thus the only roots of (16) on t h e  sheet of in te res t  must s a t i s fy  

e <  or -k lP  vm- < -k2, These are  i n  f ac t  the roots of the - kt k2 - v m 

character is t ic  equation in  the classical  Lave Wave problem. 

(A-7) 
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